Abstract

The low yield of food production ascribed to harm caused by pests has led to the application of pesticides to food crops. Pesticide residues from the application on crops are mostly found in foods that can cause diseases for consumers of such products. A total of 37 pesticide residues consisting of 15 organochlorines (OC), 13 organophosphorus (OP) and 9 synthetic pyrethroids (SP) were determined. The QuEChERS method was exploited for extraction and clean-up. Gas Chromatograph was used for detection and quantification which was equipped with an electron capture detector and pulse flame photometric detector. The results showed that the mean concentrations of pesticides in fish ranged from 0.007 mg·kg-1 to 1.026 mg·kg-1 for OCs, 0.002 mg·kg-1 to 0.190 mg·kg-1 for OPs and 0.004 mg·kg-1 to 0.032 mg·kg-1 for SP. Sediments have mean concentrations ranged from 0.005 mg·kg-1 to 1.207 mg·kg-1 for OCs. OP ranges from 0.002 mg·kg-1 to 0.399 mg·kg-1 and 0.003 mg·kg-1 to 0.202 mg·kg-1 for synthetic pyrethroids. Maximum Residue Limits were exceeded in both fish and sediment samples except for malathion, fenitrothion, profenofos, gamma-chlordane, and deltamethrin. Exposure in children ranged from 4.60 × 10-6 mg·kg-1·d-1 to 2.36 × 10-3 mg·kg-1·d-1 and in adults it is from 1.97 × 10-6 mg·kg-1·d-1 to 1.01 × 10-3 mg·kg-1·d-1. Health risk estimation revealed a non-cancer risk potential of β-HCH in sediment and aldrin and p,p'-DDE in fish. Carcinogenic risk assessed for organochlorine pesticide residues indicates cancer benchmark concentrations greater than 10-4 to 10-6 threshold for acceptance.

Highlights

  • Pesticides are widely used in agricultural and sanitation sectors for combating pests in Ghana [1]

  • The results showed that the mean concentrations of pesticides in fish ranged from 0.007 mg·kg−1 to 1.026 mg·kg−1 for OCs, 0.002 mg·kg−1 to 0.190 mg·kg−1 for OPs and 0.004 mg·kg−1 to 0.032 mg·kg−1 for synthetic pyrethroids (SP)

  • This study has revealed the presence of β-HCH, aldrin and p,p'-DDE in fish and sediment in concentrations above acceptable detectable levels by WHO/ FAO with corresponding non-cancer and cancer risk values

Read more

Summary

Introduction

Pesticides are widely used in agricultural and sanitation sectors for combating pests in Ghana [1]. The use of pesticides in agricultural lands to control pests brings about bumper harvest to farmers whiles producing toxics to non-target organisms [2] such as fish [3]. Pesticide usage in Ghana continues to increase as agricultural production escalates. This increase in pesticide usage brings with it environmental and health ills arising from indiscriminate use and inappropriate handling of the chemicals. Non-target flora and fauna concentrate these chemicals in their tissues and pass them on along the food chain. The accumulation of such pollutants in food chain may restrict the consumption of valuable food resource like fish [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.