Abstract
Water footprinting and the assessment of water use in life cycle assessment have become of major interest in sustainability assessments. Various initiatives for combining water resource issues with consumption of products and services have been initiated in the last decade. However, comprehensive databases fulfilling the requirements for addressing these issues have been lacking and are necessary to facilitate efficient and consistent assessments of products and services. To this purpose, ecoinvent focused on integrating appropriate water use data into version 3, since previously water use data has been inconsistently reported and some essential flows were missing. This paper describes the structure of the water use data in ecoinvent, how the data has been compiled and the way it can be used for water footprinting. The main changes required for proper assessment of water use are the addition of environmental and product flows in order to allow a water balance over each process. This is in accordance with the strict paradigm in ecoinvent 3 to focus on mass balances, which requires the inclusion of water contents of all products (also for e.g. waste water flows), as well as emissions of water to soil, air and various water bodies. Water inputs from air (e.g. rainwater harvesting) is introduced but is not yet used by any activity. Ecoinvent version 3.1 consistently includes the relevant flows to address water use in life cycle assessment (LCA) and calculate water footprints on the product level for most processes including uncertainty information. Although some problems regarding data quality and spatial resolution remain, this is an important step forward and can limit efforts for detailed data collection to the most sensitive processes in the product system. With the combination of data on water use and emissions to water for each process, concentration and corresponding water classes can also be calculated and assessed with existing impact assessment methods. This comprehensive collection of water use data on the process level facilitates the proper assessment of water use within an LCA and water footprints beyond agricultural production. Especially in LCA, but also in tools for eco-design and specific water footprint, this data is essential and leads to a cost-efficient way of assessing consumption choices and product design decisions with full transparency. It enhances the effectiveness of investing in data collection by performing sensitivity analyses using ecoinvent data to identify the most relevant flows and processes.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have