Abstract

Different porous carbon materials were applied to remove organic compounds and heavy metals from wastewater. Hierarchically, porous nitrogen rich monolithic carbon (HPC) was synthesized through the sol-gel synthesis method and carbonization process. Rice husk (RH), an agricultural waste material followed by carbonization at two different temperatures (RH400 and RH600) was used as the naturally generated porous carbon composite. Activated carbon (AC) was used as the control. According to the FT-IR spectra, different functional groups are present in all adsorbents. Scanning electron microscopic (SEM) images show an irregular shaped, random disordered macropore structure in RH and a robust sponge-like disordered macropore structure with ligaments in HPC. Transmission electron microscopic (TEM) images of these materials show a disordered mesopore network. Adsorption capacities of these porous carbon materials were determined for organic dyes and metal ions. Methylene blue and Methyl orange were used as the model organic compounds and Pb2+, Cu2+, Ni2+, and Cd2+ ions were selected as the metal ions. The experimental data demonstrate that the adsorption capacity of AC for Methyl orange (5.88 mg/g) is much higher than that of the alternatives (RH400–1.97 mg/g, RH600–0.69 mg/g, and HPC – 1.14 mg/g). Adsorption capacity of all the adsorbents for Methylene blue is quite similar. Adsorption capacity of RH400 for Pb2+ is much higher than that of RH600, AC and HPC. RH400 has a greater adsorption for Cu2+ and Ni2+ than the other adsorbents. All adsorbents show a low adsorption capacity for Cd2+. RH400 is a promising adsorbent for wastewater purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.