Abstract
As the discharge amount of dye wastewater increases with the development of the textile printing and dyeing industries, the treatment of the dyes in the wastewater becomes more complex. The adsorption method is a commonly used method for treating dye wastewater. The adsorbent is the key factor affecting the adsorption performance. To develop a high-performance adsorbent, a porous carbon material prepared from potassium citrate by the calcination method was applied in the adsorption of dye-containing water in this study. The morphology and pore structure of the porous carbon materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and N2 adsorption/desorption isotherm. The porous carbon material with a specific surface area of 1436 m2 g-1, PC-900, was used as an adsorbent for the adsorption of methyl orange (MO) and methylene blue (MB). The results showed that the maximum adsorption capacity of PC-900 for MO and MB reached 927 and 1853.6 mg g-1, respectively. Studies on adsorption kinetics and adsorption isotherms showed that the pseudo-second-order kinetic model and the Langmuir isotherm model were more appropriate to describe the adsorption process of MO and MB by PC-900. In addition, the results of the mixed adsorption experiment of MO and MB dyes showed that PC-900 had selective adsorption for MB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.