Abstract

Carbon-based nanofillers, such as carbon nanotubes (CNTs) and graphene sheets are considered as effective nanoreinforcements due to their unique structures and material performance. However, the utilisation of such nanofillers can be hindered owing to a high level of nanotoxicity via human inhalation and high material cost for CNTs, as well as the tendency to form agglomerates of graphene sheets in polymer matrices. Bamboo charcoals (BCs) are eco-friendly and sustainable carbon-based particles, which possess good affinity with polyvinyl alcohol (PVA), one of popular water soluble biopolymers, to achieve excellent properties of PVA/BC nanocomposites. In particular, porous structures of BC particles enable polymeric molecules to easily penetrate with the strong internal bonding. In this study, fully eco-friendly PVA/BC nanocomposite films were successfully fabricated using a simple solution casting method to achieve the high dispersibility of BCs. With the inclusion of only 3 wt% BCs, tensile modulus and tensile strength of PVA/BC nanocomposite films were enhanced by 70.2 and 71.6%, respectively, when compared with those of PVA films. Better thermal stability is manifested for resulting nanocomposite films as opposed to that of pristine PVA, which is evidenced by the maximum increase of 17.8% in the decomposition temperature at the weight loss of 80%. It is anticipated that BCs can compete against conventional carbon-based nanofillers with a great potential to be developed into eco-friendly nanocomposites used for thin-film packaging application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.