Abstract

BackgroundObtaining high-value products from lignocellulosic biomass is central for the realization of industrial biorefinery. Acid pretreatment has been reported to yield xylooligosaccharides (XOS) and improve enzymatic hydrolysis. Moreover, xylose, an inevitable byproduct, can be upgraded to xylonic acid (XA). The aim of this study was to valorize sugarcane bagasse (SB) by starting with XA pretreatment for XOS and glucose production within a multi-product biorefinery framework.ResultsSB was primarily subjected to XA pretreatment to maximize the XOS yield by the response surface method (RSM). A maximum XOS yield of 44.5% was achieved by acid pretreatment using 0.64 M XA for 42 min at 154 °C. Furthermore, XA pretreatment can efficiently improve enzymatic digestibility, and achieved a 90.8% cellulose conversion. In addition, xylose, the inevitable byproduct of the acid-hydrolysis of xylan, can be completely converted to XA via bio-oxidation of Gluconobacter oxydans (G. oxydans). Subsequently, XA and XOS can be simultaneously separated by electrodialysis.ConclusionsXA pretreatment was explored and exhibited a promising ability to depolymerize xylan into XOS. Mass balance analysis showed that the maximum XOS and fermentable sugars yields reached 10.5 g and 30.9 g per 100 g raw SB, respectively. In summary, by concurrently producing XOS and fermentable sugars with high yields, SB was thus valorized as a promising feedstock of lignocellulosic biorefinery for value-added products.

Highlights

  • Obtaining high-value products from lignocellulosic biomass is central for the realization of industrial biorefinery

  • This is because sugarcane bagasse (SB) hemicelluloses are predominately composed of xylan

  • In the present study, SB samples were pretreated at different temperatures (130–170 °C) over a time range of 15–75 min with 3.0 g of SB and 30 mL xylonic acid (XA) solutions with different XA concentrations

Read more

Summary

Introduction

Obtaining high-value products from lignocellulosic biomass is central for the realization of industrial biorefinery. Acid pretreatment has been reported to yield xylooligosaccharides (XOS) and improve enzymatic hydrolysis. Of particular note is that diluted acid pretreatment is beneficial for enzymatic hydrolysis, but it is an effective mean to obtain desirable xylooligosaccharide (XOS) products from SB [10, 11]. This is because SB hemicelluloses are predominately composed of xylan. It is beneficial to implement diluted acid pretreatment in a biorefinery process to optimize XOS production. Doing so would add an additional profit-generating product to the product portfolio of a biorefinery with the potential to achieve a high price

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call