Abstract

Used tea leaves are utilized for preparation of carbon with high surface area and electrochemical properties. Surface area and pore size of tea leaves derived carbon are controlled by varying the amount of KOH as activating agent. The maximum surface area of 2532 m2 g−1 is observed, which is much higher than unactivated tea leaves (3.6 m2 g−1). It is observed that the size of the electrolyte ions has a profound effect on the energy storage capacity. The maximum specific capacitance of 292 F g−1 is observed in 3 m KOH electrolyte with outstanding cyclic stability, while the lowest specific capacitance of 246 F g−1 is obtained in 3 m LiOH electrolyte at 2 mV s−1. The tea leaves derived electrode shows almost 100% capacitance retention up to 5000 cycles of study. The symmetrical supercapacitor device shows a maximum specific capacitance of 0.64 F cm−2 at 1 mA cm−2 and about 95% of specific capacitance is retained after increasing current density to 12 mA cm−2, confirming the high rate stability of the device. An improvement over 35% in the charge storage capacity is seen when increasing device temperature from 10 to 80 °C. The study suggests that used tea leaves can be used for the fabrication of environment friendly high performance supercapacitor devices at a low cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.