Abstract

The architecture, engineering, and construction industry is undergoing a significant shift, steering buildings away from resource-intensive processes toward becoming instruments for climate mitigation. In this transformative landscape, integrating circular bio-based alternatives and reducing emissions through biotechnological and enzymatic processes have significant potential. Specifically, mycelium-bound composites have emerged as renewable alternatives for new materials and added-value wood products. Despite their numerous advantages, integrating these materials into current engineering practices presents challenges deriving from the complex nature of the material´s production process and the transfer from the laboratory to the industrial scale. In this regard, the design and engineering of novel controlled environments are fundamental in maintaining optimal growth conditions during material production. This, in turn, influences the overall material performance and potential use in construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.