Abstract

High-frequency ultrasonic imaging with improved spatial resolution has gained increasing attention in the field of biomedical imaging. Sensitivity of transducers plays a pivotal role in determining ultrasonic image quality. Conventional ultrasonic transducers are mostly made from lead-based piezoelectric materials that may be harmful to the human body and the environment. In this study, a new (K,Na)NbO3-KTiNbO5-BaZrO3-Fe2O3-MgO (KNN-NTK-FM) lead-free piezoelectric ceramic was utilized in developing eco-friendly transducers for high-frequency biomedical ultrasonic imaging applications. A needle transducer with a small active aperture size of 0.45 × 0.55 mm2 was designed and evaluated. The fabricated transducer exhibits great performance with a high center frequency (52.6 MHz), a good electromechanical coupling (keff ∼ 0.45), a large bandwidth (64.4% at -6 dB), and a very low two-way insertion loss (10.1dB). Such high sensitivity is superior to those transducers based on other lead-free piezoelectric materials and can even be comparable to the lead-based ones. Imaging performance of the KNN-NTK-FM needle transducer was analyzed by imaging a wire phantom and an agar tissue-mimicking phantom. Imaging capabilities of the transducer were further demonstrated by ex vivo imaging studies on a porcine eyeball and a rabbit aorta. The results suggest that the KNN-NTK-FM piezoceramic has many attractive properties over other lead-free piezoelectric materials in developing eco-friendly highly sensitive transducers for high-frequency biomedical ultrasonic imaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.