Abstract

Recapitulation of the resonance condition for the fundamental and higher electron cyclotron harmonics in the electron cyclotron maser instability (ECMI) enables radiation below and confirms the possibility of radiation in a narrow band above harmonics n > 1. Near n = 1 resonance on the confined lower X-mode branch, amplification is supported by the decrease in phase and group speeds. Confined slow large-amplitude quasi-electrostatic X-modes non-linearly modulate the plasma to form cavitons until self-trapped inside them at a further increasing wavenumber. They undergo wave–wave interaction, enabling escape into free space in the second harmonic band below n = 2. At a sufficiently large parallel wavenumber (oblique propagation), the fundamental resonance n = 1 is hyperbolic, a possibility so far missed but vital for an effective ECMI in the upward current region. Here, the resonance hyperbola favorably fits the loss-cone boundary, the presumably important ECMI upward-current source-electron distribution, to stimulate ECMI growth at available auroral electron energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call