Abstract
We present a theoretical and numerical study of the bifurcations of the stationary patterns supported by a chemotactic model of Multiple Sclerosis (MS). We derive the normal forms of the dynamics which allows to predict the appearance and stabilization of the emerging branches describing the concentric patterns typical of Balo's sclerosis, a very aggressive variant of MS. Spatial modulation of the Turing-type structures through a zigzag instability is also addressed. The nonlinear stage of the Eckhaus and zigzag instability is investigated numerically: defect-mediated wavenumber adjustments are recovered and the time of occurrence of phase-slips is studied as the system parameters are varied.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have