Abstract

This article presents Eciton, a very low-power recurrent neural network accelerator for time series data within low-power edge sensor nodes, achieving real-time inference with a power consumption of 17 mW under load. Eciton reduces memory and chip resource requirements via 8-bit quantization and hard sigmoid activation, allowing the accelerator as well as the recurrent neural network model parameters to fit in a low-cost, low-power Lattice iCE40 UP5K FPGA. We evaluate Eciton on multiple, established time-series classification applications including predictive maintenance of mechanical systems, sound classification, and intrusion detection for IoT nodes. Binary and multi-class classification edge models are explored, demonstrating that Eciton can adapt to a variety of deployable environments and remote use cases. Eciton demonstrates real-time processing at a very low power consumption with minimal loss of accuracy on multiple inference scenarios with differing characteristics, while achieving competitive power efficiency against the state-of-the-art of similar scale. We show that the addition of this accelerator actually reduces the power budget of the sensor node by reducing power-hungry wireless transmission. The resulting power budget of the sensor node is small enough to be powered by a power harvester, potentially allowing it to run indefinitely without a battery or periodic maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call