Abstract

With the development of wireless sensing, researchers have proposed many contactless vital sign monitoring systems, which can be used to monitor respiration rates, heart rates, cardiac cycles and etc. However, these vital signs are ones of coarse granularity, so they are less helpful in the diagnosis of cardiovascular diseases (CVDs). Considering that electrocardiogram (ECG) is an important evidence base for the diagnoses of CVDs, we propose to generate ECGs from ultra-wideband (UWB) signals in a contactless manner as a fine-grained cardiac monitoring solution. Specifically, we analyze the properties of UWB signals containing heartbeats and respiration, and design two complementary heartbeat signal restoration methods to perfectly recover heartbeat signal variation. To establish the mapping between the mechanical activity of the heart sensed by UWB devices and the electrical activity of the heart recorded in ECGs, we construct a conditional generative adversarial network to encode the mapping between mechanical activity and electrical activity and propose a contrastive learning strategy to reduce the interference from noise in UWB signals. We build the corresponding cardiac monitoring system named RF-ECG and conduct extensive experiments using about 120,000 heartbeats from more than 40 participants. The experimental results show that the ECGs generated by RF-ECG have good performance in both ECG intervals and morphology compared with the ground truth. Moreover, diseases such as tachycardia/bradycardia, sinus arrhythmia, and premature contractions can be diagnosed from the ECGs generated by our RF-ECG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.