Abstract

Abstract The success of an Electrocardiogram (ECG) Decision Support System (DSS) requires the use of an optimum machine learning approach. For this purpose, this paper investigates the use of three feedforward neural networks; the Multilayer Perceptron (MLP), the Radial Basic Function Network (RBF), and the Probabilistic Neural Network (PNN) for recognition of normal and abnormal heartbeats. Feature sets were based on ECG morphology and Discrete Wavelet Transformer (DWT) coefficients. Then, a correlation between features was applied. After that, networks were configured and consequently used for the ECG classification. Next, with respect to the performance criteria fixed by the DSS users, a comparative study between them was deduced. Results show that for classifying the MIT-BIH arrhythmia database signals, the RBF (ACC = 99.9%) was retained as the most accurate network, the PNN (Tr_ttime = 0.070 s) as the rapidest network in the training stage and the MLP (Test_time = 0.096 s) as the rapidest network in testing stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.