Abstract
To reduce the influence of both the baseline wander (BW) and noise in the electrocardiogram (ECG) is much important for further analysis and diagnosis of heart disease. This paper presents a convex optimization method, which combines linear time-invariant filtering with sparsity for the BW correction and denoising of ECG signals. The BW signals are modeled as low-pass signals, while the ECG signals are modeled as a sequence of sparse signals and have sparse derivatives. To illustrate the positive of the ECG peaks, an asymmetric function and a symmetric function are used to punish the original ECG signals and their difference signals, respectively. The banded matrix is used to represent the optimization problem, in order to make the iterative optimization method more computationally efficient, take up the less memory, and apply to the longer data sequence. Moreover, an iterative majorization-minization algorithm is employed to guarantee the convergence of the proposed method regardless of its initialization. The proposed method is evaluated based on the ECG signals from the database of MIT-BIH Arrhythmia. The simulation results show the advantages of the proposed method compared with wavelet and median filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.