Abstract
Epstein-Barr virus (EBV), the first human virus identified with oncogenic properties, encodes a class of microRNAs known as miR-BART (BamHI-A rightward transcript microRNAs). This study investigates the pivotal role of EBV-miR-BART14-3p in the progression of gastric cancer, particularly focusing on its effects on epithelial-mesenchymal transition (EMT), cell proliferation, and migration. EBV-associated gastric cancer (EBVaGC) is distinguished by unique genomic and epigenomic characteristics, with EBV miRNAs significantly influencing tumor biology by regulating gene expression. Our research demonstrates that EBV-miR-BART14-3p facilitates gastric cancer cell migration and invasion by targeting the tumor suppressor gene LACTB, which in turn activates the Phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, a critical driver of EMT. The suppression of LACTB in EBVaGC highlights its crucial role in inhibiting tumor progression. These findings position EBV-miR-BART14-3p as a key player in gastric cancer development and underscore its potential as both a prognostic biomarker and a therapeutic target for EBVaGC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have