Abstract

Antibiotic-resistant bacteria has become one of the greatest challenges to global human health today. Innovative strategies are needed to identify new therapeutic leads to tackle infections of drug-resistant Gram-negative bacteria. We herein synthesize a series of EB analogues to investigate their antibacterial activities. Select polar functionality at N-terminus of EB exhibited higher activities against multi-drug-resistant Gram-negative pathogens, including E. coli, P. aeruginosa and K. pneumoniae. EB analogue 4g and 4i exhibited potent antibacterial activities against E. coli-ESBL (MIC = 1–4 µg/mL) and E. coli producing NDM-1 (MIC = 4–32 µg/mL), which is superior to the traditional antibiotics (cefazolin, imipenem). Furthermore, the time-kill kinetics studies and the inhibition zone tests indicated that analogue 4i effectively and rapidly cause death of E. coli-ESBL and E. coli-NDM-1. Additionally, accumulation assays and SEM images showed that 4i could permeate bacterial membranes, leading to an irregular cell morphology. Importantly, bacterial resistance for analogue 4i was difficult to induce against E. coli-ESBL. EB analogues here reported low cytotoxicity against L-929 cells and mice model in vivo. We believe that EB analogues with polar functionality could play a pivotal role in the development of novel antibacterial agents in eradicating multi-drug-resistant Gram-negative pathogens infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call