Abstract

The electron-beam-induced current (EBIC) method is utilized in this work to visualize conductive channels formed in graphene oxide as a result of resistive switching. Using metal–insulator–semiconductor (MIS) structures, an increase in the electron beam induced current by a few orders of magnitude as compared with the EBIC signal in metal–insulator–metal (MIM) structures is achieved. The mechanism of the EBIC image formation related to the conductive channels is explained by the separation and collection of the e-beam generated excess carriers by rectifying barrier nanocontacts formed at the graphene oxide/Si interface during resistive switching. It is shown that the collection efficiency of the formed nanocontacts decreases with the beam energy, in agreement with the theoretical predictions for the Schottky-like nanocontacts. An important advantage of the EBIC method is demonstrated in its ability to monitor the generation and elimination of high density conductive channels even when the current–voltage measurements cannot detect and separate these processes. EBIC study of the dynamics of the conductive channel formation can help better understand the underlying physical mechanisms of their generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call