Abstract

Copepods of the genus Calanus have adapted to high levels of seasonality in prey availability by entering a period of hibernation during winter known as diapause, but repeated observations of active Calanus spp. have been made in January in high latitude fjords which suggests plasticity in over-wintering strategies. During the last decade, the period of Polar Night has been studied intensively in the Arctic. A continuous presence of an active microbial food web suggests the prevalence of low-level alternative copepod prey (such as microzooplankton) throughout this period of darkness. Here we provide further evidence of mid-winter zooplankton activity using a decadal record of moored acoustics from Kongsfjorden, Svalbard. We apply an individual based life-history model to investigate the fitness consequences of a range of over-wintering strategies (in terms of diapause timing and duration) under a variety of prey availability scenarios. In scenarios of no winter prey availability (Pwin = 0 g C L􀀀1), the optimal time to exit diapause is in March. However, as Pwin increases (up to 40 g C L􀀀1), there is little fitness difference in copepods exiting diapause in January compared to March. From this, we suggest that Calanus are able (in energetic terms) to either i) exit diapause early to deal with uncertainty in spring bloom timing, or ii) remain active throughout winter if diapause is not possible (i.e. environment not deep enough, or not enough lipid reserves built up over the previous summer). The range of viable overwintering strategies increases with increasing Pwin, suggesting that there is more flexibility for Calanus spp. in a scenario of non-zero Pwin.

Highlights

  • Calanoid copepods dominate the meso-zooplankton of Arctic seas, with Calanus spp. making up 91% of the overall biomass of copepods (Hirche and Kwasniewski, 1997)

  • The aim of this study was to gain a better understanding of the consequences of mid-winter activity on the fitness of Arctic Calanus populations, answering the question: Is being active during winter a dead end, or is this strategy sustainable given that alternative food sources may be available? We investigated whether Calanus might remain active to accommodate uncertainty in the phenology of the spring bloom, i.e., accepting lower fitness as a consequence of ensuring presence in the surface layer when the spring bloom starts

  • We have used observational data to parameterize a life history model to explain observations of mid-winter activity in an Arctic zooplankton population in the Polar Night, and to understand the range of possible strategies that lead to successful reproduction

Read more

Summary

Introduction

Calanoid copepods dominate the meso-zooplankton of Arctic seas, with Calanus spp. making up 91% of the overall biomass of copepods (Hirche and Kwasniewski, 1997). Calanus form a crucial part of marine ecosystems, in the Arctic. Their high lipid content provides a rich energy source to much of the Arctic marine foodweb, through fish, ctenophores, little auks, and carnivorous or omnivorous zooplankton, and they form the key source of energy for high trophic levels in the Arctic, including birds, fish, and marine mammals (Falk-Petersen et al, 2009). Calanus hyperboreus is a capital breeder using its own energy reserves for reproduction. Calanus glacialis has a variable strategy - it is a capital breeder in sea-ice free systems, but will use ice algae as an energy source where possible and adopt an income breeding strategy (Daase et al, 2013; Renaud et al, 2018)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call