Abstract
ABSTRACTEnhanced microbial bioremediation of petroleum hydrocarbon–contaminated (PHC) soils with the earthworm Alma millisoni and the bacterium Bacillus spp. was conducted. The petroleum-contaminated topsoils (PCTS) (0–15 cm) collected from motorcar mechanic workshops were thoroughly mixed, sieved, and air dried for 7 days. The pH, water holding capacity (WHC), total nitrogen (N), organic carbon (OC), heavy metal (HM), and bacteriological analysis of the soil samples were evaluated. The indigenous bacterial isolates were subjected to 1%, 5%, and 50% of spent engine oil (SEO), incubated for 7 days at 37°C, and the isolate with the highest tolerance pattern was used for the remediation. Out of four indigenous bacteria isolated, Bacillus spp. had the highest tolerance to SEO. Preliminary exposure assessments of A. millisoni to PHC soils (100%, 60%, 50%, and 40% PHC) were carried out using 48-h avoidance response, coiling exhibition, swollen clitelium, 14-day survival tests, and antioxidant enzyme activities such as catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and glutathione peroxidase (GPx). Subsequently, four treatments of 1 kg soil mixed with 100%, 75%, 50%, and 0% PCTS were designed and spiked with 20 g of dried cow dung. Each of the treatments consisted of four setups, viz., A. millisoni alone, A. millisoni and Bacillus spp., Bacillus spp. alone, and control. The bacterial counts, total petroleum hydrocarbon (TPH), total and bioavailable HM, and total OC and N of the soils were evaluated every 7 days for 35 days. Significant increases in the activities of CAT, SOD, GPx, and GST compared with control were recorded in A. millisoni exposed to the various treatments. Treatment with combined A. millisoni and Bacillus spp. resulted in significant (p < .05) reduction in TPH, reduction in total and bioavailable heavy metals, and increased total OC and N of the soil compared with other treatments. The percentage reduction in TPH and heavy metals with concomitant increase in total OC and total N recorded in the 50% PHC soils followed the order A. millisoni and Bacillus spp. > A. millisoni alone > Bacillus spp. alone. Hence, enhanced bioremediation using A. millisoni and Bacillus spp. may be a good biocatalyst in the remediation of petroleum hydrocarbon–contaminated soils.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have