Abstract

AbstractUltramafic pseudotachylytes have been regarded as earthquake fossils formed at mantle depths (i.e., >30 km). Here we show that pseudotachylytes hosted by ultramafic rocks from three localities have distinct magnetic properties. Fresh host peridotites contain only small amounts of coarse‐grained magnetite. In contrast, the ultramafic pseudotachylytes contain variable amounts of significantly finer magnetite that formed coseismically through melting. Among each locality, magnetite abundance in the pseudotachylytes ranges over several orders of magnitude (4–2,000 ppm), and magnetic grain size varies considerably (from single domain to multidomain). Because the host peridotites are compositionally similar, the pseudotachylyte magnetic properties are interpreted to primarily reflect the physical and cooling conditions prevailing during seismic slip. Further, the examination of laboratory‐produced ultramafic pseudotachylytes shows that quenching does not produce superfine magnetite. We hypothesize that the magnetic properties of ultramafic pseudotachylytes are controlled by fO2 and in consequence vary systematically with depth of formation. Therefore, these properties can be used to assess if the ruptures producing the earthquakes that these pseudotachylytes represent nucleated at actual mantle depths or at shallow depths during exhumation of mantle rocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.