Abstract
This research provides a detailed analysis of earthquake-triggered landslides (ETLs) in Greece, spanning from antiquity to the present, with an emphasis on their temporal, spatial, and statistical characteristics. Supported by published scientific sources and geographic information systems (GIS) tools, we detected 673 landslides triggered from 144 earthquakes in Greece. With 166 ETLs associated with historical earthquakes and 507 with recent ones, the analysis reveals that regions in western Greece, including the Ionian Islands and the Peloponnese, exhibit the highest ETL frequencies, a trend strongly related to their seismotectonic regime. Most ETLs have occurred in geotectonic units belonging to the External Hellenides. Limestone-dominated lithologies and post-alpine deposits were identified as particularly susceptible to ETLs. These are strongly associated with earthquakes with magnitudes ranging from 5.5 to 7.0. Rockfalls constitute the most frequent type of ETLs in Greece, accounting for nearly half of all documented events. Coastal and offshore landslides, though less frequent, still pose unique risks for Greece. ETLs have mainly been observed in the very high and high susceptibility areas. The impacts of ETLs on both natural and built environments are profound, with destruction of buildings and infrastructure exacerbating the public health impact and socio-economic toll of such events.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have