Abstract

We have imaged earthquake source zones beneath the northeast India region by seismic tomography, fractal dimension and b value mapping. 3D P-wave velocity (Vp) structure is imaged by the Local Earthquake Tomography (LET) method. High precision P-wave (3,494) and S-wave (3,064) travel times of 980 selected earthquakes, m d ≥ 2.5, are used. The events were recorded by 77 temporary/permanent seismic stations in the region during 1993–1999. By the LET method simultaneous inversion is made for precise location of the events as well as for 3D seismic imaging of the velocity structure. Fractal dimension and seismic b value has been estimated using the 980 LET relocated epicenters. A prominent northwest-southeast low Vp structure is imaged between the Shillong Plateau and Mikir hills; that reflects the Kopili fault. At the fault end, a high-Vp structure is imaged at a depth of 40 km; this is inferred to be the source zone for high seismic activity along this fault. A similar high Vp seismic source zone is imaged beneath the Shillong Plateau at 30 km depth. Both of the source zones have high fractal dimension, from 1.80 to 1.90, indicating that most of the earthquake associated fractures are approaching a 2D space. The spatial fractal dimension variation map has revealed the seismogenic structures and the crustal heterogeneities in the region. The seismic b value in northeast India is found to vary from 0.6 to 1.0. Higher b value contours are obtained along the Kopili fault (∼1.0), and in the Shillong Plateau (∼0.9) The correlation coefficient between the fractal dimension and b value is found to be 0.79, indicating that the correlation is positive and significant. To the south of Shillong Plateau, a low Vp structure is interpreted as thick (∼20 km) sediments in the Bengal basin, with almost no seismic activity in the basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.