Abstract

We refine the 1-D velocity model of the Central India Tectonic Zone (CITZ) using well-selected arrival times of P- and S-phases of 354 local earthquakes of magnitude (Mw) between 2.0 and 5.8, recorded by national seismic network from May 1997 to March 2016. Further, we have determined the source mechanisms of 26 selected local events using moment tensor inversion to characterize the dynamics beneath the CITZ. The best-fit simulation between observed and synthetic waveforms obtained the nodal and auxiliary planes of the each faults associated with the earthquake moment magnitude (Mw) for each event. Depth of the fault plane along the CITZ varies from 5 to 38 km. From this study, we found that the western part along the CITZ shows minimum focal depth and reaches maximum 38 kms at Jabalpur in the eastern part. This complex nature of earthquake dynamics occurrence along the CITZ. We propose that the curviplanar the CITZ dominated with sinistral curvature is subjected to compression along the longer ~E–W segments and transtension along shorter segments with ~NE–SW orientations. The occurrences of normal faulting, intrusion of mafic plutons and CLVD mechanisms for earthquakes are interpreted to be linked to the transtension zones and reverse mechanisms associated with the compressions along ~E–W segments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call