Abstract

Critical slowing down (CSD) is a phenomenon that is common to many complicated dynamical systems as they approach critical transitions/bifurcations. We demonstrate that pressure signals measured during the onset of thermoacoustic instabilities in a gas turbine engine test exhibit evidence of CSD well before the oscillation amplitude increases. CSD was detected through both the variance and the lag-1 auto-regressive coefficient in a rolling window of the pressure signal. Increasing trends in both metrics were quantified using Kendall's τ, and the robustness and statistical significance of the observed increases were confirmed. Changes in the CSD metrics could be detected several seconds prior to changes in the oscillation amplitude. Hence, real-time calculation of these metrics holds promise as early warning signals of impending thermoacoustic instabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call