Abstract
A number of risks exist in commercial housing, and it is critical for the government, the real estate industry, and consumers to establish an objective early warning indicator system for commercial housing risks and to conduct research regarding its measurement and early warning. In this paper, we examine the commodity housing market and construct a risk index for the commodity housing market at three levels: market level, the real estate industry and the national economy. Using the Bootstrap aggregating-grey wolf optimizer-support vector machine (Bagging-GWO-SVM) model after synthesizing the risk index by applying the CRITIC objective weighting method, the commercial housing market can be monitored for risks and early warnings. Based on the empirical study, the following conclusions have been drawn: (1) The commodity housing market risk index accurately reflect the actual risk situation in Tianjin; (2) Based on comparisons with other models, the Bagging-GWO-SVM model provides higher accuracy in early warning. A final set of suggestions is presented based on the empirical study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.