Abstract

Predicting mood, health, and stress can sound an early alarm against mental illness. Multi-modal data from wearable sensors provide rigorous and rich insights into one's internal states. Recently, deep learning-based features on continuous high-resolution sensor data have outperformed statistical features in several ubiquitous and affective computing applications including sleep detection and depression diagnosis. Motivated by this, we investigate multi-modal data fusion strategies featuring deep representation learning of skin conductance, skin temperature, and acceleration data to predict self-reported mood, health, and stress scores (0 - 100) of college students (N = 239). Our cross-validated results from the early fusion framework exhibit a significantly higher (p <; 0.05) prediction precision over the late fusion for unseen users. Therefore, our findings call attention to the benefits of fusing physiological data modalities at a low level and corroborate the predictive efficacy of the deeply learned features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.