Abstract

Early ventricular fibrillation (VF) prediction is critical for prevention of sudden cardiac death, and can improve patient survival. Generally, electrocardiogram (ECG) signal features are extracted to predict VF, a process which plays an important role in prediction accuracy. Therefore, this study first proposes a novel feature based on topological data analysis (TDA) to improve the accuracy of early ventricular fibrillation prediction. Firstly, the heart activity is regarded as a cardiac dynamical system, which is described by phase space reconstruction. Then the topological structure of the phase space is characterized with persistent homology, and its statistical features are further extracted and defined as TDA features. Finally, 60 subjects (30 VF, 30 healthy) from three public ECG databases are used to validate the prediction performance of the proposed method. Compared to heart rate variability features and box-counting features, TDA features achieve a superior accuracy of 91.7%. Additionally, the three types of features are combined as fusion features, achieving the optimal accuracy of 95.0%. The fusion features are then ranked, and the first seven components are all from the TDA features. It follows that the proposed features provide a significant effect in improving the predictive performance of early VF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.