Abstract

Trichosporon asahii is the major cause of invasive trichosporonosis, but little is known about the host immune response to this pathogen. In this study, the early transcriptional response of human monocyte-like THP-1 cells to T. asahii infection was evaluated using cDNA microarray and 1,315 differentially expressed genes were identified. The up-regulated genes were mostly involved in both innate and adaptive immune responses, as well as apoptosis and anti-apoptosis processes. Genes encoding the pro-inflammatory cytokines TNF-α, IL-1β, IL18 and IL-23α, along with the both C-C motif and C-X-C motif chemokines were strongly up-regulated, suggesting that THP-1 cells can mount a powerful inflammatory response to T. asahii infection. Genes encoding pattern recognition receptors were found up-regulated, such as dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin, cluster of differentiation 36 and the long pentraxin 3. Genes encoding members of the dual-spasticity phosphates family were up-regulated, and these genes were considered as a negative feedback mechanism to prevent excessive inflammatory response. The down-regulated genes in T. asahii-infected THP-1 cells were predominantly associated with cell cycle, mitosis, cell division and DNA repair. Thus, our study defines the early transcriptional response of monocyte-like THP-1 cells to T. asahii infection and provides a foundation for further investigations into the pathogenesis of T. asahii infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.