Abstract

BackgroundFrancisella tularensis, the causative agent of tularemia, is one of the most infectious human bacterial pathogens. It is phagocytosed by immune cells, such as monocytes and macrophages. The precise mechanisms that initiate bacterial uptake have not yet been elucidated. Participation of C3, CR3, class A scavenger receptors and mannose receptor in bacterial uptake have been already reported. However, contribution of an additional, as-yet-unidentified receptor for F. tularensis internalization has been suggested.ResultsWe show here that cell-surface expressed nucleolin is a receptor for Francisella tularensis Live Vaccine Strain (LVS) and promotes LVS binding and infection of human monocyte-like THP-1 cells. The HB-19 pseudopeptide that binds specifically carboxy-terminal RGG domain of nucleolin inhibits LVS binding and infection of monocyte-like THP-1 cells. In a pull-down assay, elongation factor Tu (EF-Tu), a GTP-binding protein involved in protein translation, usually found in cytoplasm, was recovered among LVS bacterial membrane proteins bound on RGG domain of nucleolin. A specific polyclonal murine antibody was raised against recombinant LVS EF-Tu. By fluorescence and electron microscopy experiments, we found that a fraction of EF-Tu could be detected at the bacterial surface. Anti-EF-Tu antibodies reduced LVS binding to monocyte-like THP-1 cells and impaired infection, even in absence of complement and complement receptors. Interaction between EF-Tu and nucleolin was illustrated by two different pull-down assays using recombinant EF-Tu proteins and either RGG domain of nucleolin or cell solubilized nucleolin.DiscussionAltogether, our results demonstrate that the interaction between surface nucleolin and its bacterial ligand EF-Tu plays an important role in Francisella tularensis adhesion and entry process and may therefore facilitate invasion of host tissues. Since phagosomal escape and intra-cytosolic multiplication of LVS in infected monocytes are very similar to those of human pathogenic F. tularensis ssp tularensis, the mechanism of entry into monocyte-like THP-1 cells, involving interaction between EF-Tu and nucleolin, might be similar in the two subspecies. Thus, the use of either nucleolin-specific pseudopeptide HB-19 or recombinant EF-Tu could provide attractive therapeutic approaches for modulating F. tularensis infection.

Highlights

  • Francisella tularensis, the causative agent of tularemia, is one of the most infectious human bacterial pathogens

  • Nucleolin mediates binding of live vaccine strain (LVS) and infection of human monocyte-like THP-1 cells We evaluated the role of nucleolin in LVS binding and infection of human monocyte-like THP-1 cells, by testing the effect of the pseudopeptide 5 [LysProArg]-template-assembled synthetic peptide (HB-19)

  • We showed that elongation factor elongation factor Tu (EF-Tu) expressed at bacterial surface interacts with nucleolin, expressed on surface of human monocyte-like THP-1 cells

Read more

Summary

Introduction

Francisella tularensis, the causative agent of tularemia, is one of the most infectious human bacterial pathogens. It is phagocytosed by immune cells, such as monocytes and macrophages. Francisella tularensis is a small non-motile Gram-negative bacterium that causes the zoonotic disease tularemia in large number of animals, such as rabbits, hares, and small rodents [1]. F. tularensis is one of the most infectious human bacterial pathogens as ten bacteria can cause disease in humans [1,2]. The two primary human pathogens are F. tularensis subspecies tularensis (type A strain) and F. tularensis subspecies holarctica (type B strain). F. tularensis initially resides in the phagosome, whose maturation is arrested. After 2 hours of infection, the phagosome membrane is disrupted and the bacterium replicates freely in the cytoplasm of the macrophages [3,4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call