Abstract
Tight-binding quantum chemical molecular dynamics method has been applied in order to study the Σ3 (111), Σ5 (100) and random grain boundaries oxidation initiation mechanism of fcc Fe–Cr binary alloy in a boiling water reactor environment. The metal–water interaction at high temperatures causes diffusion of environmental species and segregation of metallic atoms. Water molecules favorably permeate through the random grain boundary (GB) to find the space generated by atomic rearrangement, although it is difficult to diffuse in the Σ3 (111) and Σ5 (100) grain boundaries. Moreover, applied strain creates extra spaces in the lattice that can facilitate the absorption of environmental species. The highly positively charged chromium and the negatively charged oxygen atoms or OH remain along the GB by forming bonds. The GB atoms selectively lose their valence electrons when dissociated atoms adsorb, indicating that the oxidation process is a possible mechanism of intergranular cracking initiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.