Abstract

With growing interest in the biomass value chain, a multitude of reactions are proposed in literature for the conversion of biomass into a variety of biofuels. In the early design stage, data for a detailed design is scarce rendering an in‐depth analysis of all possibilities challenging. In this contribution, the screening methodology process network flux analysis (PNFA) is introduced assessing systematically the cost and energy performance of processing pathways. Based on the limited data available, a ranking of biorefinery pathways and a detection of bottlenecks is achieved by considering the reaction performance as well as the feasibility and energy demand of various separation strategies using thermodynamic sound shortcut models. PNFA is applied to a network of six gasoline biofuels from lignocellulosic biomass. While 2‐butanol is ruled out due to a lack in yield and selectivity, iso‐butanol and 2‐butanone are identified as economically promising fuels beyond ethanol. : Process Systems Engineering. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3096–3108, 2016

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.