Abstract

Background and aimsOur previous data showed that lymphatic function impairment occurs before the onset of atherosclerosis in mice and is precociously associated with a defect in the propelling capacity of the collecting lymphatic vessels. Concomitantly, we found that lymphatic transport can be restored in mice by systemic injections of a mutant form of VEGF-C (VEGF-C 152s), a growth factor known to increase mesenteric collecting lymphatic vessel pumping through a VEGFR-3-dependent mechanism in rats. In the present study, we aimed to determine whether and how early modulation of collecting lymphatic vessel function could restrain atherosclerosis onset and limit its progression. MethodsBefore the administration of a pro-atherosclerotic regimen, Ldlr−/− mice at 6 weeks of age were injected intraperitoneally with VEGF-C 152s or PBS every other day for 4 weeks, fed on high fat diet (HFD) for an additional 8 weeks to promote plaque progression, and switched back on chow diet for 4 more weeks to stabilize the lesion. ResultsEarly treatment with VEGF-C first improved lymphatic molecular transport in 6-week-old Ldlr−/− mice and subsequently limited plaque formation and macrophage accumulation, while improving inflammatory cell migration through the lymphatics in HFD-fed mice. The contraction frequency of the collecting lymphatic vessels was significantly increased following treatment throughout the whole atherosclerotic process and resulted in enhanced plaque stabilization. This early and maintained rescue of the lymphatic dysfunction was associated with an upregulation of VEGFR3 and FOXC2 expression on lymphatic endothelial cells. ConclusionsThese results suggest that early treatments that specifically target the lymphatic contraction capacity prior to lesion formation might be a novel therapeutic approach for the prevention and treatment of atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.