Abstract
Stick insects have elaborate mechanosensory organs in their subgenual organ complex in the proximal tibia, particularly the distal organ with scolopidial sensilla in linear arrangement. For early postembryonic developmental stages of Sipyloidea sipylus (Phasmatodea: Necrosciinae), the neuroanatomy of the scolopidial organs in the subgenual organ complex and the campaniform sensilla is documented by retrograde axonal tracing, and compared to the adult neuroanatomy. Already after hatching of the first larval instars are the sensory structures of subgenual organ and distal organ as well as tibial campaniform sensilla differentiated. In the distal organ, the full set of sensilla is shown in all larval stages examined. This finding indicates that the sensory organs differentiate during embryogenesis, and are already functional by the time of hatching. The constancy of distal organ sensilla over postembryonic stages allows investigation of the representative number of sensilla in adult animals as well as in larval instars. Some anatomical changes occur by postembryogenic length increase of the distal organ, and grouping of the anterior subgenual sensilla. The embryonic development of scolopidial sensilla is similar for auditory sensilla in hemimetabolous Orthoptera (locusts, bushcrickets, crickets) where tympanal membranes develop during postembryogenic stages, conferring a successive gain of sensitivity with larval moults.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have