Abstract

Abstract This paper discusses the relationships between granitic magmatism and gold mineralization and the exhumation history of the Dapinggou gold deposit in northern Altun, NW China based on the geochronological data, including zircon U‐Pb ages, Rb‐Sr isochron age and 40Ar‐39Ar dating and MDD modeling data. The main granitic magmatism age in this area is attained from the ID TIMS U‐Pb geochronology of zircons from the Kuoshibulak granite, the biggest granite in the northern Altun area, which gives a concordant age of 443±5 Ma in the Late Ordovician. Zircon ID TIMS U‐Pb geochronology of the West Dapinggou biotite granite west of the Dapinggou gold deposit gives concordant ages around 485±10 Ma, representing the early stage of Ordovician magmatism. The Rb‐Sr isochron age (487±21 Ma) of 6 quartz inclusion samples from quartz veins in this gold deposit is very close to that of the West Dapinggou granite. MDD modeling of step heating 40Ar‐39Ar data of K‐feldspar from the same West Dapinggou biotite granite gives a rapid cooling history from 300°C to 150°C during 200–185 Ma. According to the age data and the geological setting of this area, we conclude that the Dapinggou gold deposit was formed at the early stage of the Early Paleozoic granitic magmatism in northern Altun, and exhumed in the Early Jurassic due to the normal faulting of the Lapeiquan detachment. The Early Paleozoic magmatism may provide heat source and produce geological fluids, which are very important for gold mineralization. Exhumation in the Mesozoic caused the uplift of the deposit towards the ground surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call