Abstract

Simple SummaryWith the continuous improvement in the progress of poultry industry, a better understanding of the avian immune system is necessary. A prolonged holding period (36–72 h), along with a delay in access to feed and/or water post-hatching, has a negative influence on performance, intestinal histomorphology, and the immune system development of chicks. Therefore, the present study aimed to investigate the effect of early feeding with different diet composition or delayed feeding during the first 72 h of chick’s life on the expression of immunity-related genes and histomorphology of digestive and lymphoid organs of layer-type chicks. Early nutrition post-hatching had no negative effect on the development of the lymphoid and digestive organs in chicks. Histomorphological examination revealed an increase in cortex and cortex:medulla of thymus and bursa in the early fed groups compared to the fasted ones, with resultant impacts on the primary lymphoid organs. Higher germinal center areas and white pulp of the spleen were recorded in the early fed chicks, implying augmented proliferation and maturation of B cells in the secondary lymphoid organs. In the liver, a strong positive reaction to Best’s carmine stain in the early fed groups, indicating that the liver of these chicks had numerous glycogen granules in the cytoplasm of hepatocytes. The expression levels of splenic-immunity related genes were up-regulated in most of the early fed chicks at 14 day of age. Our findings suggested that early feeding post-hatch can modify the splenic-immunity related genes and modulate the histomorphology of the digestive (liver and proventriculus) and lymphoid organ in layer-type chicks during the early life post-hatching.Early feeding post-hatching (EFPH) can impact the immune response and modify the immunity-related gene expression. Therefore, we aimed to examine the effects of EFPH with different diets composition versus fasting during the first 72 h of chick’s life on the histomorphological structures of the liver, proventriculus, central and peripheral lymphoid organs, and immunity-related genes in layer-type chicks during the brooding period. A total of 400 chicks were randomly allotted into 4 groups with 4 replicates each. The experimental groups during the first 72 h of life were: feed and water deprivation (control, T1), feeding a starter layer diet (20% CP and 11.84 MJ/kg ME, T2), feeding a starter layer diet contained 3% molasses in its composition (20% CP and 11.81 MJ/kg ME; T3), and feeding a starter broiler diet (23% CP and 12.68 MJ/kg ME, T4). After the first 72 h of chick’s life, all chicks were fed ad libitum the T2 diet. EFPH had no negative effect on the development of the lymphoid or digestive organs in chicks. Greater relative weights of the spleen and bursa of Fabricius (p < 0.05) were observed in the early fed chicks compared to control at day 14 of age. Histomorphological examination revealed an increase (p < 0.05) in thymus cortex and cortex:medulla in the T3 and T4 groups compared to the fasted ones at day 28 of age. Pelicae height, follicular width, cortex, and cortex:medulla of bursa were improved (p < 0.01) in the fed groups compared to fasted chicks, with resultant influences on the primary lymphoid organs. Compared to control, higher germinal center areas and white pulp of the spleen (p < 0.05) were recorded in the early fed chicks, implying augmented proliferation and maturation of B cells in the secondary lymphoid organs. In the liver, a strong positive reaction to Best’s carmine stain in the early fed groups, indicating that the liver of these chicks had numerous glycogen granules or greater glycogen density in the cytoplasm of hepatocytes. There was a significant enhancement in the proventriculus mucosal and gland thickness, as well as fold height (p < 0.05) in the early fed chicks. The expression levels of splenic Toll-like receptor 2, interleukin 4, tumor necrosis factor α, and interferon gamma were up-regulated (p < 0.01) in most of the early fed chicks (T2, T3, and T4) compared to fasted ones at 14 day of age. In conclusion, EFPH could modify the splenic-immunity related genes and modulate the histomorphology of the digestive (liver and proventriculus) and lymphoid organs in layer-type chicks during the brooding period.

Highlights

  • During the last two decades, a significant enhancement has been made on the functional characteristics of layer- and meat-type poultry through genetic selection; rising the prevalence of early chick mortality, possibly due to immunosuppression and a reduced resistance to infections

  • Very few studies have been performed to assess the effect of early feeding or feed and water deprivation PH (FWDPH) on the growth performance and intestinal morphology in both broiler and layer-type chicks but to our knowledge little information is existing in the literature about the effect of Early feeding post-hatching (EFPH) with different diets composition versus FWDPH on the expression of immunity-related genes and histomorphology of digestive and lymphoid organs of layer-type chicks

  • Increased thickness of the proventriculus mucosa and gland are important indicators of the proventriculus development and suggesting that early feeding PH increased the production of the gastric juice, which is essential for digestion [53]

Read more

Summary

Introduction

During the last two decades, a significant enhancement has been made on the functional characteristics of layer- and meat-type poultry through genetic selection; rising the prevalence of early chick mortality, possibly due to immunosuppression and a reduced resistance to infections. The immune system development of the newly hatched chicks is influenced by numerous factors, one of the most critical factors is the early feeding post-hatch (EFPH) [1,2,3,4]. Hatched chicks are commonly pulled out when the majority of them have hatched, causing chicks to be deprived of feed or water for 24–72 h. Other common management practices such as sex determination, counting, vaccination, and transportation are accountable for the delayed feeding post-hatch (PH) [4,5]. Prolonged holding period (36–72 h) along with a delay in access to feed or water have negative influences on chicks because of dehydration and energy depletion [4,6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call