Abstract
Early environmental stress significantly affects the development of offspring. This stress has been modeled in rats through the maternal separation (MS) paradigm, which alters the functioning of the HPA axis and can enhance ethanol intake at adulthood. Infant rats are sensitive to ethanol's reinforcing effects, which modulate ethanol seeking and intake. Little is known about the impact of MS on sensitivity to ethanol's appetitive and aversive effects during infancy. The present study assessed ethanol-induced conditioned place preference established through second-order conditioning (SOC), spontaneous or ethanol-induced locomotor activity and ethanol intake in preweanling rats that experienced normal animal facility rearing (AFR) or daily episodes of maternal separation (MS) during postnatal days 1–13 (PDs 1–13). Low-ethanol dose (0.5g/kg) induced appetitive conditioned place preference (via SOC) in control rats given conventional rearing but not in rats given maternal separation in early infancy, whereas 2.0g/kg ethanol induced aversive conditioned place preference in the former but not the latter. The administration of a kappa antagonist at PD 1 or immediately before testing did not alter ethanol-induced reinforcement. High (i.e., 2.5 and 2.0g/kg) but not low (i.e., 0.5g/kg) ethanol dose induced reliable motor stimulation, which was independent of early maternal separation. Ethanol intake and blood alcohol levels during conditioning were unaffected by rearing conditions. Pups given early maternal separation had lower body weights than controls and showed an altered pattern of exploration when placed in an open field. These results indicate that, when assessed in infant rats, earlier maternal separation alters the balance between the appetitive and aversive motivational effects of ethanol but has no effect on the motor activating effects of the drug.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have