Abstract
Early life stress (ELS) is associated with an increased risk of developing depression and anxiety disorders. Disturbances of the neurobiological glutamatergic system are implicated in depression; however, the long-term effects of ELS on glutamate (Glu) metabolites remain unclear. Our study used 7T proton magnetic resonance spectroscopy (7T 1H MRS) to detect metabolic Glu in a rat model to investigate maternal deprivation (MD)-induced ELS. MD was established in Sprague-Dawley rats by periodic separation from mothers and peers. Changes in the hippocampal volume and Glu metabolism were detected by 7T 1H MRS after testing for depression-like behavior via open field, sucrose preference, and Morris water maze tests. Adult MD offspring exhibited depression-like behavior. Compared to the control, the MD group exhibited reduced ratio of central activity time to total time and decreased sucrose consumption (p < 0.05). MD rats spent less time in the fourth quadrant, where the platform was originally placed, in the Morris water maze test. According to 7T 1H MRS, hippocampus of MD rats had elevated Glu and glutamate + glutamine (Glu+Gln) levels compared with the control group hippocampi, but Gln, γ-aminobutyric acid (GABA), and glutamate + glutamine (Glu+Gln) in the prefrontal cortex of MD rats showed a downward trend. Depression-like behavior and cognition deficits related to ELS may induce region-specific changes in Glu metabolism in the prefrontal cortex and hippocampus. The novel, noninvasive 7T 1H MRS-identified associations between Glu levels and ELS may guide future clinical studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have