Abstract

Electronic monitoring (EM) is increasingly used to monitor catch and bycatch in wild capture fisheries. EM video data are still manually reviewed and adds to ongoing management costs. Computer vision, machine learning, and artificial intelligence-based systems are seen to be the next step in automating EM data workflows. Here we show some of the obstacles we have confronted and approaches taken as we develop a system to automatically identify and count target and bycatch species using cameras deployed to an industry vessel. A Convolutional Neural Network was trained to detect and classify target and bycatch species groups, and a visual tracking system was developed to produce counts. The multiclass detector achieved a mean average precision of 53.42%. Based on the detection results, the visual tracking system provided automatic fish counts for the test video data. Automatic counts were within two standard deviations of the manual counts for the target species and most times for the bycatch species. Unlike other recent attempts, weather and lighting conditions were largely controlled by mounting cameras under cover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.