Abstract
Experimental evidence suggests that leptin may exert direct effects on peripheral tissues. In this study we investigated some transductional molecules in skeletal muscle, after intraperitoneal leptin injection in wild-type and ob/ob mice. By immunoprecipitation and immunoblotting with anti-phosphotyrosine antibodies, we observed a modified pattern of phosphotyrosine proteins. We then identified an increase in JAK2, IRS1 and IRS2 tyrosine-phosphorylation and in their association with p85, a subunit of PI3K. The increase in PI3K activity in immunoprecipitated p85 did not reach statistical significance, however, both Akt and GSK3 resulted significantly hyper-phosphorylated. Bad, an Akt substrate involved in cell survival, appeared modified in its phosphorylation. ERK1, ERK2 and p38 MAP kinase phosphorylation significantly increased, even if the latter only in wild-type animals. Finally, by EMSA experiments, we documented that leptin increased the DNA binding capacity of Stat3 homodimers and AP-1. Thus, leptin appears to activate, within minutes, some insulin signalling molecules. Stat3 and AP-1 activation by gene expression remodelling could subsequently trigger more leptin-specific effects. Further, leptin might play a still underestimated role in cell survival.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have