Abstract

Principal Components Analysis (PCA) is used to classify the running condition of a machine by means of projecting the original data to the Principal Components space. However, if the data are concentrated in a nonlinear subspace, PCA will fail to work well. Kernel Principal Components Analysis (KPCA) transforms the input data from the original input space into a higher dimensional feature space with the nonlinear mapping, and then uses the nonlinear principal components to realize the classification. In this paper a case of gear fault diagnosis was studied with KPCA. The characteristic values of frequent domain from vibration signals of the gearbox under the running condition were extracted, and the KPCA method was used to classify gear crack fault. The result shows that KPCA is more effective to distinguish the state of the gear and more suitable to diagnose the gear faults in early stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.