Abstract

This article presents a methodology for the diagnosis of abnormal conditions in a combustion process through flame imaging and kernel principal component analysis (KPCA). A digital imaging system is used to capture real-time flame images and radiation signals, from which flame characteristics such as flame area, brightness, non-uniformity, and oscillation frequency are quantified. These characteristics are used as the variables to establish the KPCA model of the combustion process. With the use of Hotelling's T2 and Q statistics, the monitoring of abnormal conditions of the combustion process is achieved. Unlike the traditional principal component analysis (PCA) method, the KPCA method is capable of dealing with nonlinear data via nonlinear mapping, which projects the original nonlinear input space into a high-dimensional linear feature space. The effectiveness of the methodology is demonstrated by applying the approach to processing the data obtained on a 9MWth heavy oil fired combustion test facility. Experimental results obtained show that the KPCA method outperforms the traditional PCA in discriminating between the normal and abnormal combustion conditions, even in cases where the number of training samples is limited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.