Abstract

Post-Moore’s law area-constrained systems rely on accelerators to deliver performance enhancements. Coarse-grained accelerators can offer substantial domain acceleration, but manual, ad hoc identification of code to accelerate is prohibitively expensive. Because cycle-accurate simulators and high-level synthesis (HLS) flows are so time-consuming, the manual creation of high-utilization accelerators that exploit control and data flow patterns at optimal granularities is rarely successful. To address these challenges, we present AccelMerger, the first automated methodology to create coarse-grained, control- and data-flow-rich merged accelerators. AccelMerger uses sequence alignment matching to recognize similar function call-graphs and loops, and neural networks to quickly evaluate their post-HLS characteristics. It accurately identifies which functions to accelerate, and it merges accelerators to respect an area budget and to accommodate system communication characteristics like latency and bandwidth. Merging two accelerators can save as much as 99% of the area of one. The space saved is used by a globally optimal integer linear program to allocate more accelerators for increased performance. We demonstrate AccelMerger’s effectiveness using HLS flows without any manual effort to fine-tune the resulting designs. On FPGA-based systems, AccelMerger yields application performance improvements of up to 16.7× over software implementations, and 1.91× on average with respect to state-of-the-art early-stage design space exploration tools.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.