Abstract

Early diagnosis of sepsis-associated encephalopathy (SAE) is essential for the treatment and prognosis of septic patients. Static PET and MRI have shown promise for early diagnosis, while pharmacokinetic parameters from dynamic PET may provide better quantification for SAE. This study aims to compare the performance of dynamic 2-deoxy-2-[18F]fluoro-D-glucose ([18F]F-FDG) PET and multiparametric MRI in early imaging SAE with a view to providing guidance for the early diagnosis of SAE. Dynamic [18F]F-FDG-PET/CT scans and multiparametric MRI were performed in SAE mice induced by LPS. Standardized uptake value (SUV) was measured in static scan images and [18F]F-FDG pharmacokinetic parameters were analyzed with two-tissue compartment model and Patlak plot. MRI relative signal intensity (rT1) derived from T1-weighted images (pre and post contrast) and 4 parameters originating from diffusion-weighted data were measured. Both SUV and dephosphorylation rate constant (k4) increased in SAE model as early as 6h post sepsis induction, while k4 increased with the relative value (SAE/normal) significantly stronger than that of SUV. Moreover, the net influx constant (Ki) showed significant decrease in SAE as early as 6h compared with normal mice. Increased signal intensity was identified in T1-weighted contrast enhanced images and rT1 value increased at 12h post induction. Diffusion tensor imaging (DTI) revealed fractional anisotropy (FA) decreased at 12h and 24h in external capsule (ec) and declined axial diffusivity (AD) was shown in white matter at 24h. The dynamic PET (k4) was more sensitive than static PET (SUV) for early diagnosis of SAE and declined Ki was firstly found in murine SAE, which indicated the advantage of dynamic PET/CT in early detection and differential diagnosis of SAE. While MRI has a higher soft tissue resolution than PET/CT and can classify more subtle brain areas, the comprehensive utilization of the two modalities is helpful for managing SAE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.