Abstract

Effective detection of bio-molecules relies on the precise design and preparation of materials, particularly in laser desorption/ionization mass spectrometry (LDI-MS). Despite significant advancements in substrate materials, the performance of single-structured substrates remains suboptimal for LDI-MS analysis of complex systems. Herein, designer Au@SiO2@ZrO2 core-shell substrates are developed for LDI-MS-based early diagnosis and prognosis of pancreatic cancer (PC). Through controlling Au core size and ZrO2 shell crystallization, signal amplification of metabolites up to 3 orders is not only achieved, but also the synergistic mechanism of the LDI process is revealed. The optimized Au@SiO2@ZrO2 enables a direct record of serum metabolic fingerprints (SMFs) by LDI-MS. Subsequently, SMFs are employed to distinguish early PC (stage I/II) from controls, with an accuracy of 92%. Moreover, a prognostic prediction scoring system is established with enhanced efficacy in predicting PC survival compared to CA19-9 (p < 0.05). This work contributes to material-based cancer diagnosis and prognosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call