Abstract

BackgroundEarly detection and treatment of neuropathy in leprosy is important to prevent disabilities. A recent study showed that the Nerve Conduction Studies (NCS) and Warm Detection Thresholds (WDT) tests can detect leprosy neuropathy the earliest. These two tests are not practical under field conditions, however, because they require climate-controlled rooms and highly trained staff and are expensive. We assessed the usefulness of alternative test methods and their sensitivity and specificity to detect neuropathy at an early stage.MethodsThrough a literature search we identified five alternative devices that appeared user-friendly, more affordable, portable and/or battery-operated: the Neuropad®, Vibratip™, NC-Stat®DPNCheck™, NeuroQuick and the Thermal Sensibility Tester (TST), assessing respectively sweat function, vibration sensation, nerve conduction, cold sensation and warm sensation. In leprosy patients in Bangladesh, the posterior tibial and sural nerves that tested normal for the monofilament test and voluntary muscle test were assessed with the NCS and WDT as reference standard tests. The alternative devices were then tested on 94 nerves with abnormal WDT and/or NCS results and on 94 unaffected nerves. Sensitivity and specificity were the main outcomes.ResultsThe NeuroQuick and the TST showed very good sensitivity and specificity. On the sural nerve, the NeuroQuick had both a sensitivity and a specificity of 86%. The TST had a sensitivity of 83% and a specificity of 82%. Both the NC-Stat®DPNCheck™ and Vibratip™ had a high specificity (88% and 100%), but a low sensitivity (16% and 0%). On the posterior tibial nerve, the NeuroQuick and the TST also showed good sensitivity, but the sensitivity was lower than for the sural nerve. The Neuropad® had a sensitivity of 56% and a specificity of 61%.ConclusionsThe NeuroQuick and TST are good candidates for further field-testing for reliability and reproducibility. The feasibility of production on a larger scale should be examined.

Highlights

  • Detection and treatment of neuropathy in leprosy is important to prevent disabilities

  • Sensory nerve function impairment (NFI) is typically detected with monofilament tests (MFT) or ballpoint tests, and motor function is assessed with voluntary muscle tests (VMT)

  • It is assumed that when sensory impairment is clinically detectable, quite some damage has already been done to the nerves, the so-called subclinical neuropathy [7]

Read more

Summary

Introduction

Detection and treatment of neuropathy in leprosy is important to prevent disabilities. A recent study showed that the Nerve Conduction Studies (NCS) and Warm Detection Thresholds (WDT) tests can detect leprosy neuropathy the earliest. These two tests are not practical under field conditions, because they require climate-controlled rooms and highly trained staff and are expensive. We assessed the usefulness of alternative test methods and their sensitivity and specificity to detect neuropathy at an early stage. Earlier studies found that 10% to 55% of newly diagnosed patients already showed one or Sensory nerve function impairment (NFI) is often the first symptom of leprosy neuropathy. Sensory NFI is typically detected with monofilament tests (MFT) or ballpoint tests, and motor function is assessed with voluntary muscle tests (VMT). It is assumed that when sensory impairment is clinically detectable, quite some damage has already been done to the nerves, the so-called subclinical neuropathy [7].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call