Abstract

This article describes the development and application of a model-based scheme for detecting the early signs of coil failure in solenoid valves. Contrary to other works, the proposed method simply isolates the fault-induced change in the coil resistance from thermal effects and provides a cost-effective solution with no comprehensive equipment demand. The model-based detection method employs a simple thermal model of the solenoid and an extended Kalman filter (EKF) for generating coil current residuals. The EKF utilizes measurements of coil voltage, coil current, ambient, and fluid temperature. The CUmulative SUM of the current residual is found to be sensitive to the early signs of coil failure. An experimental setup is utilized for evaluating the robustness of the detection method in the event of changing ambient temperature, convection, and fluid flow conditions. Results show that the method is able to detect the early signs of coil failure, and robust behavior and high detection probabilities are achieved for realistic fault sizes. The realistic fault sizes and the number of fault instances before failure are determined through extensive accelerated tests, where solenoids are operated at high temperature until failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.