Abstract

Patients treated with whole-brain irradiation often develop cognitive deficits that are presumed to result from normal tissue injury. Age is a risk factor for these side effects. We compared the cognitive effects of fractionated whole-brain irradiation (300 kV X rays) in rats irradiated either as young adults or in middle age. A deficit in object memory was apparent at 3 months in rats irradiated as young adults, however, no comparable deficit was apparent in rats irradiated in middle age. In addition, the deficit in object memory in young adults was no longer apparent at 6 and 12 months after fractionated whole-brain irradiation and no radiation-induced deficit was detectable in a spatial memory task at any time, regardless of age at time of irradiation. Thus, clinically relevant fractionated whole-brain irradiation in adult rats resulted in early-delayed cognitive changes that were heterogeneous, transient and age-dependent. The results of the current and previous studies of radiation-induced cognitive changes support the continued investigation and validation of rodent models of radiation-induced brain injury, which are critical for developing and testing new therapies for treatment-induced cognitive dysfunction in cancer survivors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.