Abstract

Little is known about how diet-induced obesity and insulin resistance affect protein and amino acid (AA) metabolism in tissues. The natural relative abundances of the heavy stable isotopes of C (δ 13C) and N (δ 15N) in tissue proteins offer novel and promising biomarkers of AA metabolism. They, respectively, reflect the use of dietary macronutrients for tissue AA synthesis and the relative metabolic use of tissue AA for oxidation v. protein synthesis. In this study, δ 13C and δ 15N were measured in the proteins of various tissues in young adult rats exposed perinatally and/or fed after weaning with a normal- or a high-fat (HF) diet, the aim being to characterise HF-induced tissue-specific changes in AA metabolism. HF feeding was shown to increase the routing of dietary fat to all tissue proteins via non-indispensable AA synthesis, but did not affect AA allocation between catabolic and anabolic processes in most tissues. However, the proportion of AA directed towards oxidation rather than protein synthesis was increased in the small intestine and decreased in the tibialis anterior muscle and adipose tissue. In adipose tissue, the AA reallocation was observed in the case of perinatal or post-weaning exposure to HF, whereas in the small intestine and tibialis anterior muscle the AA reallocation was only observed after HF exposure that covered both the perinatal and post-weaning periods. In conclusion, HF exposure induced an early reorganisation of AA metabolism involving tissue-specific effects, and in particular a decrease in the relative allocation of AA to oxidation in several peripheral tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call