Abstract
Several functional and structural modifications at the vascular level have been described in spontaneously hypertensive rats (SHR) during the early development of hypertension. In this study, we hypothesize that changes in the extracellular matrix (ECM) could precede the development of hypertension. Synthesis of secreted and membrane-bound sulfated proteoglycans (S-PG) by cultured vascular smooth muscle cells (VSMC) obtained from young spontaneously hypertensive rats (pSHR) mesenteric resistance arteries, during the period preceding the elevation of blood pressure (BP) was tested. After 24 h of stimulation with angiotensin II (Ang II), 10% fetal calf serum (FCS), or 0.1% FCS as control, medium and cell layer S-PG synthesis was evaluated by labeling sulfated disaccharides with [ 35S]sodium sulfate. To relate this variable with cell proliferation, DNA synthesis was measured by incorporation of [ 3H]thymidine in the cell lysate. The VSMC from pSHR synthesized more secreted and membrane-bound S-PG than age-matched Wistar rat (pW) cells in the nonstimulated (0.1% FCS) and stimulated (Ang II or 10% FCS) experimental groups. When data were expressed as percent of their own control value, both Ang II and 10% FCS lowered basal secreted and cell-associated S-PG content in VSMC from pSHR, whereas in pW rat cells, these agents produced a small increase or no change. An inverse relationship between proliferation and total S-PG production (secreted plus membrane-bound) was found in pSHR cells, but not in pW cells. In conclusion, the present study demonstrates that changes in S-PG synthesis by VSMC of resistance arteries precede the vascular dysfunction associated with the development of hypertension in SHR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.